

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035980
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment.
 Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = (ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = (ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = (ax^2 + bx + c) = (ax^2 + bx +$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme		Marks
	Foci (±5, 0), Direct	$\operatorname{trices} x = \pm \frac{9}{5}$	
1.	$(\pm)ae = (\pm)5 \text{ and } (\pm)\frac{a}{e} = (\pm)\frac{9}{5}$	Correct equations (ignore ±'s)	B1
	so $e = \frac{5}{a} \Rightarrow \frac{a^2}{5} = \frac{9}{5} \Rightarrow a^2 = 9$ or $a = \frac{5}{e} \Rightarrow \frac{5}{e^2} = \frac{9}{5} \Rightarrow e = \frac{5}{3} \Rightarrow a = 3$	M1: Solves using an appropriate method to find a^2 or a A1: $a^2 = 9$ or $a = (\pm)3$	M1A1
	$b^{2} = a^{2}e^{2} - a^{2} \Rightarrow b^{2} = 25 - 9 \text{ so}$ $b^{2} = 16 (\Rightarrow b = 4)$ or $b^{2} = a^{2}(e^{2} - 1) \Rightarrow b^{2} = 9\left(\frac{25}{9} - 1\right)$ $b^{2} = 16 (\Rightarrow b = 4)$	M1: Use of $b^2 = a^2(e^2 - 1)$ to obtain a numerical value for b^2 or b A1: : $b^2 = 16$ or $b = (\pm)4$	M1 A1
	So $\frac{x^2}{9} - \frac{y^2}{16} = 1$	M1:Use of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with their a^2 and b^2 A1: Correct hyperbola in any form.	M1 A1
			(7)

Question Number	Scheme		Marks
2.	$l_1: (\mathbf{i} - \mathbf{j} + \mathbf{k}) + \lambda(4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$	l_2 : $(3\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}) + \lambda(-4\mathbf{i} + 6\mathbf{j} + \mathbf{k})$	
(a)	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 3 & 2 \\ -4 & 6 & 1 \end{vmatrix} = -9\mathbf{i} - 12\mathbf{j} + 36\mathbf{k}$	M1: Correct attempt at a vector product between 4 i + 3 j + 2 k and -4 i + 6 j + k (if the method is unclear then 2 components must be correct) allowing for the sign error in the <i>y</i> component.	M1A1
		A1: Any multiple of $(3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k})$	
			(2)
(b) Way 1	$a_1 - a_2 = \pm (2i + 8j + k)$	M1: Attempt to subtract position vectors A1: Correct vector ±(2i + 8j + k) (Allow as coordinates)	M1 A1
	So $p = \frac{\begin{pmatrix} 2 \\ 8 \end{pmatrix} \cdot \begin{pmatrix} -9 \\ -12 \\ 36 \end{pmatrix}}{\sqrt{9^2 + 12^2 + 36^2}}$	Correct formula for the distance using their vectors: $\frac{"\pm (2i + 8j + k)" \cdot "n"}{ "n" }$	M1
	$p = \frac{\pm 78}{\sqrt{1521}} = \frac{\pm 78}{39} = 2$	M1: Correctly forms a scalar product in the numerator and Pythagoras in the denominator. (Dependent on the previous method mark)	dM1 A1
		A1: 2 (not -2)	
			(5)
(b)	$(\mathbf{i} - \mathbf{j} + \mathbf{k}) \bullet (3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}) = -13 (d_1)$	M1: Attempt scalar product between their n and either position vector	M1A1
Way 2	$(3\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}) \bullet (3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}) = 13 (d_2)$	A1: Both scalar products correct	WITAT
	$\frac{\pm 13}{\sqrt{3^2 + 4^2 + 12^2}} (=1)$	Divides either of their scalar products by the magnitude of their normal vector. $\frac{d_1 or d_2}{\left "\mathbf{n} " \right }$	M1
	$p = \frac{d_1}{\left \mathbf{n} \right } - \frac{d_2}{\left \mathbf{n} \right } \text{ or } 2 \times \frac{d_1}{\left \mathbf{n} \right }$	M1: Correct attempt to find the required distance i.e. subtracts their $\frac{d_1}{ \mathbf{"n"} } \text{ and } \frac{d_2}{ \mathbf{"n"} } \text{ or doubles their } \frac{d_1}{ \mathbf{"n"} } \text{ if } d_1 = d_2 \text{ . (Dependent on the previous method mark)}$ A1: 2 (not -2)	dM1 A1
			(5)
			Total 7

Question Number	Scheme			Mark	KS
3. (a)	y P N $x = 8$	<i>x</i>	A closed curve approximately symmetrical about both axes. A vertical line to the right of the curve. A horizontal line from any point on the ellipse to the vertical line with both P and N clearly marked.	B1	(1)
3. (b)	$M ext{ is } \left(\frac{x+8}{2}, y\right) = (X, Y)$	M1: Finds the	e mid-point of PN	M1A1	
	$\operatorname{or}\left(\frac{6\cos\theta + 8}{2}, 3\sin\theta\right) = (X, Y)$ $\frac{(2X - 8)^{2}}{36} + \frac{Y^{2}}{9} = 1$	A1: Correct n	nid-point	WIIAI	
	$\frac{(2X-8)^2}{1} + \frac{Y^2}{1} = 1$	-	cartesian equation	M1 A1	
	36 9	A1: Correct e	quation		(4)
	The next 3 marks are dependent on h	 	tion of a circle		(4)
(c)	Circle because equation may be	Convincing an	rgument – allow		
	written $(x-4)^2 + y^2 = 3^2$	_	h provided they do Can be implied by dradius.	B1ft	
	The centre is (4, 0) and the radius is 3	M1: Use their find centre an	circle equation to d radius	M1A1	
		A1: Correct c	entre and radius		
					(3)
	Special Corre			Total	8
	Special Case: In (b) they assume the locus is a circle and find the intercepts on the x-axis as (1, 0) and (7, 0) and hence deduce the centre (4, 0) and radius 3. This approach scores no marks in (b) but allow recovery in (c).				

Question Number	Schem	e	Marks
4.	$ \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1+s+t \\ -1+s+2t \\ 2 & -2t \end{pmatrix} $	M1: Writes Π_1 as a single vector	M1A1
	$ \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 + 3 + 2t \\ 2 & -2t \end{pmatrix} $	A1: Correct statement	WITAT
	$\begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1+s+t \\ -1+s+2t \\ 2 & -2t \end{pmatrix} =$	$= \begin{pmatrix} 2+2s+2t+6-6t \\ -2+2s+4t-2+2t \\ -1+s+2t+4-4t \end{pmatrix}$	M1A1
	M1: Correct attempt to multiply A	1: Correct vector in any form	
	$= \begin{pmatrix} 8+2s-4t \\ -4+2s+6t \\ 3+s-2t \end{pmatrix}$	Correct simplified vector	B1
	$\mathbf{r} = \begin{pmatrix} 8 \\ -4 \\ 3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} -4 \\ 6 \\ -2 \end{pmatrix}$		
	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ -4 & 6 - 2 \end{vmatrix} = -10\mathbf{i} + 20\mathbf{k}$	M1: Attempts cross product of their direction vectors A1: Any multiple of -10i +20k	M1A1
	(8i - 4j + 3k).(i - 2k) = 8 - 6	Attempt scalar product of their normal vector with their position vector	M1
	r. (i - 2k) = 2	Correct equation (accept any correct equivalent e.g. r. (-10 i + 20 k) = -20)	A1
			(9)

Question Number	Scheme		Marks
5(a)	$I_n = \left[x^n (2x - 1)^{\frac{1}{2}} \right]_1^5 - \int_1^5 n x^{n-1} (2x - 1)^{\frac{1}{2}} dx$	M1: Parts in the correct direction including a valid attempt to integrate $(2x-1)^{-\frac{1}{2}}$ A1: Fully correct application – may be un-simplified. (Ignore limits)	M1 A1
	$I_n = \underline{5^n \times 3 - 1} - \int_1^5 nx^{n-1} \underline{(2x - 1)(2x - 1)^{-\frac{1}{2}}} dx$	Obtains a correct (possibly un-simplified) expression using the limits 5 and 1 and writes $(2x-1)^{\frac{1}{2}}$ as $(2x-1)(2x-1)^{-\frac{1}{2}}$	B1
	$I_n = 5^n \times 3 - 1 - 2nI_n + nI_{n-1}$	Replaces $\int x^{n} (2x-1)^{-\frac{1}{2}} dx \text{ with } I_{n}$ and $\int x^{n-1} (2x-1)^{-\frac{1}{2}} dx \text{ with }$ I_{n-1}	dM1
	$(2n+1)I_n = nI_{n-1} + 3 \times 5^n - 1 *$	Correct completion to printed answer with no errors seen	Alcso
			(5)
(b)	$I_0 = \int_1^5 (2x - 1)^{-\frac{1}{2}} dx = \left[(2x - 1)^{\frac{1}{2}} \right]_1^5 = 2$	$I_0 = 2$	B1
	$5I_2 = 2I_1 + 74$ and $3I_1 = I_0 + 14$	M1: Correctly applies the given reduction formula twice A1: Correct equations for I_2 and I_1 (may be implied)	M1 A1
	So $I_1 = \frac{16}{3}$ and $I_2 =$ or $5I_2 = 2\frac{I_0 + 14}{3} + 74 \text{ and } I_2 =$	Completes to obtains a numerical expression for I_2	dM1
	$I_2 = \frac{254}{15}$		B1
			(5)
			Total 10

Question Number	Scheme		Marks
6. (a)	$\begin{pmatrix} 4 & 2 & 3 \\ 2 & b & 0 \\ a & 1 & 8 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ \dots \\ \dots \end{pmatrix}, = \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \lambda = 8$	M1: Multiplies the given matrix by the given eigenvector M1: Equates the x value to λ A1: $\lambda = 8$	M1, M1, A1
			(3)
	$\begin{pmatrix} 8 \\ 2+2b \\ a+2 \end{pmatrix} = "8" \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} $ So $a = -2$ and $b = 7$	M1: Their $2 + 2b = 2\lambda$ or their $a + 2 = 0$	
(b)	2+2b = 8 2 So a = -2 and b = 7	A1: $b = 7$ or $a = -2$	M1 A1 A1
	(a+2) (0)	A1: $b = 7$ and $a = -2$	
			(3)
(c)	$\begin{vmatrix} 4 - \lambda & 2 & 3 \\ 2 & 7 - \lambda & 0 \\ -2 & 1 & 8 - \lambda \end{vmatrix}$	1	M1
	$\therefore (4-\lambda)(7-\lambda)(8-\lambda) - 2 \times 2(8-\lambda)$		
	Correct attempt to establish the Ci = 0 is required but may be imp Allow this mark if the equation	olied by later work	
	Attempts to factorise i.e. $(8 - \lambda)(30 - 11\lambda + 6)(10 - 11\lambda)(10 - $		M1 A1
	M1: Attempt to factorise their cubic – an attempt to identify a linear factor and processes to obtain a simplified quadratic factor A1: Correct factorisation into one linear and one quadratic factor		
	Eigenvalues are 5 and 6	M1: Solves their equation to obtain the other eigenvalues A1: 5 and 6	M1 A1
			(5)
			Total 8

Question Number	Scheme		Marks
7(a)	Put $6\cosh x = 9 - 2\sinh x$		M1
	$6 \times \frac{1}{2} (e^x + e^{-x}) = 9 - 2 \times \frac{1}{2} (e^x - e^{-x})$	Replaces coshx and sinhx by the correct exponential forms	M1
	$4e^{x} + 2e^{-x} - 9 = 0 \implies 4e^{2x} - 9e^{x} + 2 = 0$	M1: Multiplies by e^x A1: Correct quadratic in e^x in any form with terms collected	M1 A1
	So $e^x = \frac{1}{4}$ or 2 and $x = \ln 2$ or $\ln \frac{1}{4}$	M1: Solves their quadratic in e ^x A1: Correct values of <i>x</i> (Any correct equivalent form)	M1 A1
(b .)			(6)
(b)	Area is $\int (9-2\sinh x - 6\cosh x) dx$	$\int (9-2\sinh x - 6\cosh x) dx \text{ or}$ $\int (6\cosh x - (9-2\sinh x)) dx$ or the equivalent in exponential form	M1
	$\pm (9x - 2\cosh x - 6\sinh x)$ or	M1: Attempt to integrate	N 1 A 1
	$\pm(9x-4e^x+2e^{-x})$	A1: Correct integration	M1 A1
	$\pm (\left[9 \ln 2 - 2 \cosh \ln 2 - 6 \sinh \ln 2\right] - \left[9 \ln \frac{1}{4} - 2 \cosh \ln \frac{1}{4} - 6 \sinh \ln \frac{1}{4}\right])$ Complete substitution of their limits from part (a). Depends on both previous M's $= \pm (9 \ln(2 \div \frac{1}{4}) - (e^{\ln 2} + e^{-\ln 2}) - 3(e^{\ln 2} - e^{-\ln 2}) + (e^{\ln \frac{1}{4}} + e^{-\ln \frac{1}{4}}) + 3(e^{\ln \frac{1}{4}} - e^{-\ln \frac{1}{4}}))$		dM1
			M1
	Combines logs correctly and uses cosh and sinh of ln correctly at least on		
	$\left(9 \ln 8 - \frac{5}{2} - \frac{18}{4} + 4.25 - 11.25\right) = 9 \ln 8 - 14 \text{ or } 27 \ln 2 - 14$ Any correct equivalent		A1cao
	Subtracting the wrong way rou		
	Subtracting the wrong way rot	(6)	
			Total 12
	Note		
	If they use $4e^{2x} - 9e^x + 2$ in (b) to find the area – no marks		

Question Number	Scheme		Marks
8(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-\frac{1}{2}}$	Correct derivative (may be unsimplified)	B1
	$s = \int \sqrt{1 + (x^{-\frac{1}{2}})^2} dx = \int_1^8 \sqrt{(1 + \frac{1}{x})} dx$	A correct formula quoted or implied. There must be some working before the printed answer.	B1
			(2)
(b)	$x = \sinh^2 u \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = 2\sinh u \cosh u$	Correct derivative	B1
	$(1+\frac{1}{x}) = 1 + \operatorname{cosech}^2 u = \coth^2 u$	$(1 + \frac{1}{x}) = \coth^2 u \text{ or } (1 + \frac{1}{x}) = \frac{\cosh^2 u}{\sinh^2 u}$ (may be implied by later work)	B1
	$s = \int \coth u \cdot 2 \sinh u \cosh u du =$	M1: Complete substitution	
	$\int 2\cosh^2 u du$	A1: $\int 2\cosh^2 u du$	M1 A1
	$= u + \frac{1}{2}\sinh 2u \text{or } \frac{1}{4}e^{2u} + u - \frac{1}{4}e^{-2u}$	M1: Uses $\cosh 2u = \pm 2 \cosh^2 u \pm 1$ or changes to exponentials in an attempt to integrate an expression of the form $k \cosh^2 u$	dM1 A1
	A1: Correct integration $x = 8 \Rightarrow u = \operatorname{arsinh} \sqrt{8} = \ln(3 + 2\sqrt{2}), x = 1 \Rightarrow u = \operatorname{arsinh} 1 = \ln(1 + \sqrt{2})$		
	$\left[u + \frac{1}{2}\sinh 2u\right]_{\text{arsinh}}^{\text{arsinh}}$		
		adsimi	
		$\frac{1}{8} - (\operatorname{arsinh} 1 + \frac{1}{2} \sinh(2\operatorname{arsinh} 1))$	
	$or \qquad \qquad \left[\frac{1}{4}e^{2u} + u - \frac{1}{4}\right]$	e^{-2u} $\int_{arsinh1}^{arsinh\sqrt{8}}$	
	$= \frac{1}{4}e^{\arcsin h\sqrt{8}} + \operatorname{arsinh}\sqrt{8} - \frac{1}{4}e^{-2\operatorname{arsinh}1}$		
	or $\left[\operatorname{arsinh} \sqrt{x} + \frac{1}{2} \sinh(2 \operatorname{arsinh} \sqrt{x}) \right]_{1}^{8}$		
	= $\operatorname{arsinh}\sqrt{8} + \frac{1}{2}\sinh(2\operatorname{arsinh}\sqrt{8}) - (\operatorname{arsinh}1 + \frac{1}{2}\sinh(2\operatorname{arsinh}1))$		
	M1: The limits $\arcsin \sqrt{8}$ and $\arcsin \ln 1$ or their $\ln(3+2\sqrt{2})$ and $\ln(1+\sqrt{2})$ used		
	correctly in their $f(u)$ or the limits 8 and 1 used correctly if they revert to x		
	Dependent on both previous M's A1: A completely correct expression		
	$\ln(1+\sqrt{2})+5\sqrt{2}$	r	A1
			(9)
			Total 11

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

 ${\bf Email} \ \underline{\bf publication.orders@edexcel.com}$

Order Code UA035980 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

